Recovering the M-channel Sturm-Liouville operator from M+1 spectra

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovering the M - channel Sturm - Liouville operator from M + 1 spectra

For a system of M coupled Schrödinger equations, the relationship is found between the vector-valued norming constants and M + 1 spectra corresponding to the same potential matrix but different boundary conditions. Under a special choice of particular boundary conditions, this equation for norming vectors has a unique solution. The double set of norming vectors and associated spectrum of one of...

متن کامل

Determining the Potential of a Sturm-liouville Operator from Its Dirichlet and Neumann Spectra

y(0) cosα+ y′(0) sinα = 0, y(1) cosβ + y′(1) sinβ = 0 (2) y(0) cosα+ y′(0) sinα = 0, y(1) cos γ + y′(1) sin γ = 0 (3) with sin(γ − β) = 0, then q(x) is uniquely determined. Notice that this theorem does not include the case of Dirichlet (boundary conditions y(0) = y(1) = 0) and Neumann (boundary conditions of y′(0) = y′(1) = 0) spectra. Borg [1], Levinson [11], Isaacson, McKean and Trubowitz [8...

متن کامل

Sturm-liouville Operator with General Boundary Conditions

We classify the general linear boundary conditions involving u′′, u′ and u on the boundary {a, b} so that a Sturm-Liouville operator on [a, b] has a unique self-adjoint extension on a suitable Hilbert space.

متن کامل

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Recovering boundary conditions in inverse Sturm-Liouville problems

Abstract. We introduce a variational algorithm, which solves the classical inverse Sturm-Liouville problem when two spectra are given. In contrast to other approaches, it recovers the potential as well as the boundary conditions without a priori knowledge of the mean of the potential. Numerical examples show that the algorithm works quite reliable, even in the presence of noise. A proof of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2004

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.1794844